Module 1 Storyline

Content Key

Activity Key

Lesson Navigating Question: What is weather?

Driving Question: How do we keep people safe in the extreme temperatures of summer and winter?

Student Artifacts **Topic Standards Key Concepts** • Interest Survey of various Weather & Weather is the state of the **Computer Science:** atmosphere at any given time. careers in meteorology Meteorology 6.IC.CU.01 • The components of weather are 6 IC CU 02 temperature, atmospheric pressure, Lesson 0 wind, humidity, precipitation and cloudiness. • Meteorology is the study of the Vocabulary: Weather, atmosphere and its processes. Meteorology

Module 1 Storyline

Topic

Temperature

Vocabulary: Temperature, Fahrenheit, Celsius, Kelvin, Absolute zero

Lesson 1

Lesson 2

Standards

Science: 6 PS3 3

6.PS3.4

Math:

6.N.1.1

Computer Science:

6.DA.CVT.01 6.DA.IM.01

Key Concepts

- Temperatures differ in the sun and shade.
- Different substances absorb different amounts of energy from the sun.
- Temperature can be measured in Celsius or Fahrenheit.

Student Artifacts

- Temperature readings of air, water, and soil in varying amounts of sunlight.
- Initial models to explain why temperature differs in sun and shade.
- Comparison of temperature readings in Celsius and Fahrenheit.

Lesson Navigating Question: How do we measure weather?

Topic

Heat Transfer

(\$\displaystyle{0}{\dis

Vocabulary: Radiation, Conduction, Convection, Convection current, Warm front, Cold front, Mirage

Standards

Science:

6.PS1.4 6.PS3.3

6.PS3.4

6.PS4.2

Key Concepts

- Energy from the sun powers all weather
 it heats the air, increasing the energy
 of the molecules which then increases
 the temperature of the air.
- Heat is transferred through radiation, conduction, and convection.
- Convection currents are caused by warm air rising and cool air sinking.
- Convection currents create air masses that affect weather patterns.
- A mirage is evidence of convection.

Student Artifacts

- Adaptation of initial temperature models to include modes of heat transfer.
- Simulation of convection current.

Lesson Navigating Question: What happens after air heats up?

Module 1 Storyline

Topic

Heat Index

Lesson 3

Lesson 4

Vocabulary: Humidity, Water vapor, Relative humidity, Saturation, Heat index

Standards

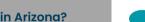
Science:

6.PS3.4 6.FSS2.4

Math:

6.N.3.1

Computer Science:


6.DA.S.01 6.DA.CVT.01 6.DA.IM.01

Key Concepts

- Relative humidity is another component of weather.
- Humidity affects how the outside temperature may feel, but does not affect the actual temperature.
- Heat Index is a measure of temperature combined with relative humidity.

Student Artifacts

 A variety of models and simulations that compare temperatures, relative humidity, and heat index in Oklahoma and Arizona.

Lesson Navigating Question: Why does hot weather in Oklahoma feel different than hot weather in Arizona?

Topic

Wind Chill

(0°0)

Vocabulary: Wind chill

Standards

Science: 6.PS3.4

Computer Science:

6.DA.S.01 6.DA.CVT.01 6.DA.IM.01

Key Concepts

- Wind chill is a measure of how air temperature feels to human skin due to wind.
- Higher wind speeds increase heat loss from the skin, decreasing body temperature.

Student Artifacts

 Windchill forecasts based on temperature and wind speed data.

Lesson Navigating Question: Does heat index work the same in winter?

Module 1 Storyline

Topic

Heat Index

Lesson 5

Vocabulary: Excessive heat warning, Wind chill warning, Heat exhaustion, Heat stroke, Hypothermia

Standards

Computer Science:

6.DA.CVT.01 6.DA.IM.01 6.IC.CU.01 6.IC.CU.02 6.AP.PD.01

Key Concepts

- High temperatures, humidity, and/or heat indexes can create unsafe conditions that put people at risk for heat exhaustion or stroke.
- High wind speeds and low temperatures or wind chill can create unsafe conditions that put people at risk for hypothermia and frostbite.

Student Artifacts

• Creation of either summer or winter temperature alerts for the public.

Lesson Navigating Question: How do we keep people safe in the extreme temperatures of summer and winter?

This document was prepared by Tulsa Regional STEM Alliance with funding provided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement #NA21OAR4320204, U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of NOAA or the U.S. Department of Commerce.

